目录
- 1. 数据文本
- 2. pom.xml中依赖配置
- 3. 工具类Util
- 4. 导入数据ImportData
- 5. 对HBase表进行WordCount
- 6. 配置Job
- 7. 结果
- 参考
1. 数据文本
1_song1_2016-1-11 song1 singer1 man slow pc
2_song2_2016-1-11 song2 singer2 woman slow ios
3_song3_2016-1-11 song3 singer3 man quick andriod
4_song4_2016-1-11 song4 singer4 woman slow ios
5_song5_2016-1-11 song5 singer5 man quick pc
6_song6_2016-1-11 song6 singer6 woman quick ios
7_song7_2016-1-11 song7 singer7 man quick andriod
8_song8_2016-1-11 song8 singer8 woman slow pc
9_song9_2016-1-11 song9 singer9 woman slow ios
10_song4_2016-1-11 song4 singer4 woman slow ios
11_song6_2016-1-11 song6 singer6 woman quick ios
12_song6_2016-1-11 song6 singer6 woman quick ios
13_song3_2016-1-11 song3 singer3 man quick andriod
14_song2_2016-1-11 song2 singer2 woman slow ios
2. pom.xml中依赖配置
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.3.6</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.6</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>3.3.6</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-auth</artifactId>
<version>3.3.6</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-common</artifactId>
<version>2.5.10</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>2.5.10</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-mapreduce</artifactId>
<version>2.5.10</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
3. 工具类Util
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.ColumnFamilyDescriptor;
import org.apache.hadoop.hbase.client.ColumnFamilyDescriptorBuilder;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.client.TableDescriptorBuilder;
import org.apache.hadoop.hbase.util.Bytes;
public class Util {
public static Connection getConnection() throws IOException {
Configuration conf = HBaseConfiguration.create();
return ConnectionFactory.createConnection(conf);
}
public static void create(Connection conn, String tableName, String[] families) throws IOException {
if (families.length == 0) {
System.out.println("please provide at least one column family.");
return;
}
if (families.length > 3) {
System.out.println("please reduce the number of column families.");
return;
}
Admin admin = conn.getAdmin();
TableName tableName2 = TableName.valueOf(tableName);
if (admin.tableExists(tableName2)) {
System.out.println("table exists!");
return;
}
TableDescriptorBuilder tableDescBuilder = TableDescriptorBuilder.newBuilder(tableName2);
for (String family : families) {
ColumnFamilyDescriptor columnFamily = ColumnFamilyDescriptorBuilder.of(family);
tableDescBuilder.setColumnFamily(columnFamily);
}
admin.createTable(tableDescBuilder.build());
System.out.println("create table success!");
admin.close();
}
public static void delete(Connection conn, String tableName) throws IOException {
Admin admin = getConnection().getAdmin();
TableName tableName2 = TableName.valueOf(tableName);
if (admin.tableExists(tableName2)) {
admin.disableTable(tableName2);
admin.deleteTable(tableName2);
}
admin.close();
}
public static void scan(Connection conn, String tableName) throws IOException {
Table table = conn.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();
ResultScanner scanner = table.getScanner(scan);
System.out.println("scan: ");
for (Result res = scanner.next(); res != null; res = scanner.next()) {
for (Cell cell : res.listCells()) {
String row = Bytes.toString(CellUtil.cloneRow(cell));
String columnFamily = Bytes.toString(CellUtil.cloneFamily(cell));
String column = Bytes.toString(CellUtil.cloneQualifier(cell));
String data = Bytes.toString(CellUtil.cloneValue(cell));
System.out.println(String.format("row: %s, family: %s, column: %s, data: %s", row, columnFamily,
column, data));
}
}
scanner.close();
}
}
4. 导入数据ImportData
import java.io.IOException;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class ImportData {
public static class MyMapper extends Mapper<LongWritable, Text, Text, NullWritable> {;
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
context.write(value, NullWritable.get());
}
}
public static class MyReducer extends TableReducer<Text, NullWritable, Text> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
String[] columns = {"name", "singer", "gender", "ryghme", "terminal"};
String[] splitStr = key.toString().split("\\s+");
Put put = new Put(Bytes.toBytes(splitStr[0]));
for (int i = 1; i < splitStr.length; i++) {
put.addColumn(Bytes.toBytes("info"), Bytes.toBytes(columns[i - 1]), Bytes.toBytes(splitStr[i]));
}
context.write(key, put);
}
}
}
5. 对HBase表进行WordCount
当HBase作为数据来源时,自定义Mapper要继承TableMapper,实质上是使用TableInputFormat取得数据。同时,需要在Job配置时调用TableMapReduceUtil中的静态方法initTableMapperJob来标示作为数据输入来源的HBase表名和自定义Mapper类。
import java.io.IOException;
import java.util.List;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
public class WordCount {
public static class MyMapper extends TableMapper<Text, IntWritable> {
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context)
throws IOException, InterruptedException {
List<Cell> cells = value.listCells();
for (Cell cell : cells) {
context.write(new Text(Bytes.toString(CellUtil.cloneValue(cell))), new IntWritable(1));
}
}
}
public static class MyReducer extends TableReducer<Text, IntWritable, Text> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = 0;
for (IntWritable val : values) {
count += val.get();
}
Put put = new Put(Bytes.toBytes(key.toString()));
put.addColumn(Bytes.toBytes("details"), Bytes.toBytes("rank"), Bytes.toBytes(Integer.toString(count)));
context.write(key, put);
}
}
}
6. 配置Job
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.log4j.Logger;
public class App {
private Logger logger1 = Logger.getLogger(App.class);
public static void main(String[] args) throws Exception {
String file = "file:///root/CodeProject/mapreduce-hbase/play_records.txt";
Connection conn = Util.getConnection();
Util.delete(conn, "music");
Util.delete(conn, "namelist");
Util.create(conn, "music", new String[] { "info" });
Util.create(conn, "namelist", new String[] { "details" });
Configuration conf = HBaseConfiguration.create();
Job job = Job.getInstance(conf, "import-data");
job.setJarByClass(App.class);
job.setMapperClass(ImportData.MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setNumReduceTasks(2);
TableMapReduceUtil.initTableReducerJob("music", ImportData.MyReducer.class, job);
FileInputFormat.addInputPath(job, new Path(file));
int res1 = job.waitForCompletion(true) ? 0 : 1;
if (res1 == 0) {
Job countJob = Job.getInstance(conf, "word-count");
countJob.setJarByClass(App.class);
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name"));
TableMapReduceUtil.initTableMapperJob(TableName.valueOf("music"), scan, WordCount.MyMapper.class, Text.class, IntWritable.class, countJob);
TableMapReduceUtil.initTableReducerJob("namelist", WordCount.MyReducer.class, countJob);
int res2 = countJob.waitForCompletion(true) ? 0 : 1;
if (res2 == 0) {
Util.scan(conn, "namelist");
}
System.exit(res2);
}
conn.close();
System.exit(res1);
}
}
7. 结果
参考
吴章勇 杨强著 大数据Hadoop3.X分布式处理实战